资源类型

期刊论文 1009

会议视频 18

年份

2023 54

2022 62

2021 78

2020 72

2019 65

2018 49

2017 45

2016 31

2015 56

2014 52

2013 37

2012 43

2011 45

2010 50

2009 46

2008 37

2007 41

2006 40

2005 23

2004 22

展开 ︾

关键词

能源 7

技术预见 5

冲击波 4

数值模拟 4

有限元法 4

仿真 3

一阶分析法 2

上限法 2

优化设计 2

化工 2

参数估计 2

可靠性 2

多目标优化 2

影响因素 2

微波遥感 2

悬索桥 2

振动 2

数学模型 2

数据驱动方法 2

展开 ︾

检索范围:

排序: 展示方式:

Existence of complete band gaps in 2D steel-water phononic crystal with square lattice

Cunfu HE, Huanyu ZHAO, Ruiju WEI, Bin WU

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 450-454 doi: 10.1007/s11465-010-0105-y

摘要: This paper theoretically and experimentally studies the existence of complete band gaps in two-dimensional (2D) phononic crystal consisting of parallel steel rods in water with square lattice. The band structure of phononic crystal is calculated by a plane wave expansion (PWE) method. Based on the well-known ultrasonic immersion transmission technique, the overlapping transmission spectra of acoustic waves, a complete band gap, is experimentally measured along the two high-symmetry directions of the first irreducible Brillouin zone. There is a very good agreement between the experimental result and the range of frequencies of the complete band gap.

关键词: phononic crystal     plane wave expansion (PWE) method     experimental study    

On subsurface box-shaped lined tunnel under incident SH-wave propagation

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 948-960 doi: 10.1007/s11709-021-0740-x

摘要: In this paper, a half-plane time-domain boundary element method is applied to obtain the seismic ground response, including a subsurface box-shaped lined tunnel deployed in a linear homogenous elastic medium exposed to obliquely incident SH-waves. Only the boundary around the tunnel is required to be discretized. To prepare an appropriate model by quadratic elements, a double-node procedure is used to receive dual boundary fields at corners as well as change the direction of the normal vector. After encoding the method in a previously confirmed computer program, a numerical study is carried out to sensitize some effective parameters, including frequency content and incident wave angle for obtaining a surface response. The depth and impedance ratio of the lining are assumed to be unvaried. The responses are illustrated in the time and frequency domains as two/three-dimensional graphs. The results showed that subsurface openings with sharp corners distorted the propagation path of the anti-plane waves to achieve the critical states on the ground surface. The present approach can be proposed to civil engineers for preparing simple underground box-shaped models with angular boundaries.

关键词: box-lined tunnel     half-plane BEM     surface response     SH-wave     time-domain    

Finite element analysis of creep for plane steel frames in fire

Hui ZHU, Yuching WU

《结构与土木工程前沿(英文)》 2012年 第6卷 第3期   页码 297-307 doi: 10.1007/s11709-012-0162-x

摘要: Steel is widely used for the construction of bridges, buildings, towers, and other structures because of its great strength, light weight, ductility, and ease of fabrication, but the cost of fireproofing is a major disadvantage. Therefore, the resistance of a steel structure to fire is a significant subject for modern society. In the past, for simplification, creep behavior was not taken into account in research on the resistance of a steel structure to fire. However, it was demonstrated that the effect of creep is considerable at temperatures that commonly reach 600°C and should not be neglected in this context. In this paper, a co-rotational total Lagrangian finite element formulation is derived, and the corresponding numerical model is developed to study the creep behavior of plane steel frames in fire conditions. The geometric nonlinearity, material nonlinearity, high temperature creep, and temperature rate of change are taken into account. To verify the accuracy and efficiency of the numerical model, four prototypical numerical examples are analyzed using this model, and the results show very good agreement with the solutions in the literature. Next, the numerical model is used to analyze the creep behavior of the plane steel frames under decreasing temperatures. The results indicate that the effect of creep is negligible at temperatures lower than 500°C and is considerable at temperatures higher than 500°C. In addition, the heating rate is a critical factor in the failure point of the steel frames. Furthermore, it is demonstrated that the deflection at the midpoint of the steel beam, considering creep behavior, is approximately 13% larger than for the situation in which creep is ignored. At temperatures higher than 500°C, the deformed steel member may recover approximately 20% of the total deflection. The application of the numerical model proposed in this paper is greatly beneficial to the steel industry for creep analysis, and the numerical results make a significant contribution to the understanding of resistance and protection for steel structures against disastrous fires.

关键词: creep     plane steel frame     fire     finite element method     geometric nonlinearity    

A MATLAB code for the material-field series-expansion topology optimization method

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 607-622 doi: 10.1007/s11465-021-0637-3

摘要: This paper presents a MATLAB implementation of the material-field series-expansion (MFSE) topo-logy optimization method. The MFSE method uses a bounded material field with specified spatial correlation to represent the structural topology. With the series-expansion method for bounded fields, this material field is described with the characteristic base functions and the corresponding coefficients. Compared with the conventional density-based method, the MFSE method decouples the topological description and the finite element discretization, and greatly reduces the number of design variables after dimensionality reduction. Other features of this method include inherent control on structural topological complexity, crisp structural boundary description, mesh independence, and being free from the checkerboard pattern. With the focus on the implementation of the MFSE method, the present MATLAB code uses the maximum stiffness optimization problems solved with a gradient-based optimizer as examples. The MATLAB code consists of three parts, namely, the main program and two subroutines (one for aggregating the optimization constraints and the other about the method of moving asymptotes optimizer). The implementation of the code and its extensions to topology optimization problems with multiple load cases and passive elements are discussed in detail. The code is intended for researchers who are interested in this method and want to get started with it quickly. It can also be used as a basis for handling complex engineering optimization problems by combining the MFSE topology optimization method with non-gradient optimization algorithms without sensitivity information because only a few design variables are required to describe relatively complex structural topology and smooth structural boundaries using the MFSE method.

关键词: MATLAB implementation     topology optimization     material-field series-expansion method     bounded material field     dimensionality reduction    

A simple method for evaluating liquefaction potential from shear wave velocity

Lianyang ZHANG,

《结构与土木工程前沿(英文)》 2010年 第4卷 第2期   页码 178-195 doi: 10.1007/s11709-010-0023-4

摘要: The simplified procedure using shear wave velocity measurements is increasingly used to evaluate the seismic liquefaction potential of soils. This procedure is based on finding the boundary separating the liquefaction and non-liquefaction cases through the analysis of liquefaction case histories, following the general format of the Seed-Idriss simplified procedure based on standard penetration test (SPT) data. It is noted that many assumptions have been made in the simplified procedure. This paper develops a simple method for evaluating the liquefaction potential of soils from shear wave velocity by using the optimum seeking method to directly analyze the liquefaction history data and quantify the influence of major factors affecting the liquefactions potential of soils. The factors considered are the earthquake magnitude, the vertical effective overburden stress, the shear wave velocity, the peak acceleration at the ground surface of the site, and the fines content of the soil. The most important factor has been identified as the shear wave velocity. The developed method uses the measured data directly and in a very simple way. Neither stress-correction of shear wave velocity nor calculation of cyclic shear stress as in the simplified procedure is required. Comparisons indicate that the developed simple method has a higher success rate for evaluating liquefaction potential of soils than the simplified procedure. A case study is presented to illustrate the application of the developed simple method and further confirms its accuracy.

关键词: liquefaction     earthquake     simple method     shear wave velocity     case history introduction    

Time reversal method for guided wave inspection in pipes

DENG Fei, WU Bin, HE Cunfu

《机械工程前沿(英文)》 2008年 第3卷 第3期   页码 251-260 doi: 10.1007/s11465-008-0050-1

摘要: The application of the time reversal method in pipe-like structures based on finite element method (FEM) is investigated. A steel pipe model measuring 70 mm × 3.5 mm is used to analyze the reflection coefficient of the (0,2) mode with the time reversal process. Simulation results show that the time reversal array method is beneficial to the improvement of the signal-to-noise ratio of a guided wave inspection system. As the intercepting window is widened, more energy is included in re-emitted signals, which leads to a large reflection coefficient of the (0,2) mode. In parallel, a circumferential locating method based on the time reversal method is described. The time reversal process used for guided wave inspection leads to the temporal and spatial focusing. When the time reversal signals are re-emitted, the angular profile obtained at the axial location of the defect can be used to determine the circumferential location of the defect. Except for a pipe with one defect, the circumferential locating method has been verified on another pipe model with two defects. Meanwhile, the elements number of the time reversal array has been discussed for enhancing the discrimination of the defect circumferential location.

关键词: reversal process     beneficial     circumferential location     energy     number    

A Stoneley wave method to detect interlaminar damage of metal layer composite pipe

Bing LI,Lei QIANG,Tong LU,Xu GENG,Minghang LI

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 89-94 doi: 10.1007/s11465-015-0323-4

摘要:

The interlaminar defect is a major form of damage in metal layer composite pipes which are widely used in petroleum and chemical industry. In this paper, a Stoneley wave method is presented to detect interlaminar damage in laminated pipe structure. Stoneley wave possesses some good characteristics, such as high energy and large displacement at the interface and non-dispersive in the high-frequency, so the sensitivity of detecting interlaminar damage can be improved and the higher frequency can be used in damage detection compared with Lamb waves. Additionally, as the frequency increases, the wavelength of the Stoneley wave reduces. Thus, its ability to detect small defects at the interface is enhanced. Finite element model of metal layer composite pipe with interlaminar damage is used to simulate wave propagation of Lamb waves and Stoneley wave, respectively. The damage location is calculated by using the Stoneley wave signal obtained from finite element model, and then the results are compared with the actual damage locations. The simulation examples demonstrate that the Stoneley wave method can better identify the interlaminar damage in laminated pipe structure compared with Lamb waves.

关键词: Stoneley wave     interlaminar damage     metal laminated pipe    

基于变量变换级数展开法的光波导矢量本征模分析

肖金标,孙小菡,张明德,丁东

《中国工程科学》 2001年 第3卷 第11期   页码 49-53

摘要:

基于变量变换级数展开法,获得了掩埋矩形光波导及脊形光波导的矢量本征模及其传播常数。变量 变换使无限平面映射成单位平两,从而使单位平面边界上的电磁场自然为零,消除了非物理反射,提高了计算 精度;另外,由于这种方法所导致的矩阵阶数小,因此计算效率较高。分析的结果与已发表的结果吻合较好, 可以为优化波导光电子器件的结构提供参考。

关键词: 变量变换级数展开法     光波导     矢量本征模分析    

Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer

Bing LI,Xu GENG,Tong LU,Lei QIANG,Minghang LI

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 380-391 doi: 10.1007/s11465-015-0365-7

摘要:

The interface wave traveling along the boundary of two materials has been studied for nearly a century. However, experiments, engineering applications, and interface wave applications to the non-destructive inspection of interlaminar composite have developed slowly. In this research, an experiment that applies Stoneley waves (a type of interfacial wave between two solid half-spaces) is implemented to detect the damage in a multilayer structure. The feasibility of this method is also verified. First, the wave velocity and wave structure of Stoneley waves at a perfectly bonded aluminum-steel interface are obtained by solving the Stoneley wave dispersion equation of two elastic half-spaces. Thereafter, an experiment is conducted to measure the Stoneley wave velocity of an aluminum-steel laminated beam and to locate interlaminar cracks by referring to the Stoneley wave velocity and echo wave time. Results indicate that the location error is less than 2%. Therefore, Stoneley waves show great potential as a non-destructive inspection method of a multilayer structure.

关键词: crack localization     interface waves     Stoneley waves     interlaminar damage     multilayer structure    

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1128-1143 doi: 10.1007/s11709-021-0753-5

摘要: This paper provides insight into the seismic behavior of a full-scale precast reinforced concrete wall under in-plane cyclic loading combined with out-of-plane loading replicated by sand backfill to simulate the actual condition of basement walls. The tested wall exhibited flexural cracks, owing to the high aspect ratio and considerable out-of-plane movement due to lateral pressure from the backfill. The wall performed satisfactorily by exhibiting competent seismic parameters and deformation characteristics governed by its ductile response in the nonlinear phase during the test with smaller residual drift. Numerical analysis was conducted to validate experimental findings, which complied with each other. The numerical model was used to conduct parametric studies to study the effect of backfill density and aspect ratio on seismic response of the proposed precast wall system. The in-plane capacity of walls reduced, while deformation characteristics were unaffected by the increase in backfill density. An increase in aspect ratio leads to a reduction in in-plane capacity and an increase in drift. Curves between the ratio of in-plane yield capacity and design shear load of walls are proposed for the backfill density, which may be adopted to determine the in-plane yield capacity of the basement walls based on their design shear.

关键词: precast wall     basement wall     out-of-plane response     quasi-static test     sand backfill     seismic parameters    

New computational treatment of optical wave propagation in lossywaveguides

Jian-xin ZHU,Guan-jie WANG

《信息与电子工程前沿(英文)》 2015年 第16卷 第8期   页码 646-653 doi: 10.1631/FITEE.1400406

摘要: In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse operator of the equation. Meanwhile, an operator marching method, a one-way re-formulation based on the Dirichletto-Neumann (DtN) map, is improved to solve the equation. Numerical examples show that our treatment is more efficient.

关键词: Adjoint operator     Orthogonal     Chebyshev     Pseudospectral method     Dirichlet-to-Neumann map    

Experimental investigation and ANN modeling on improved performance of an innovative method of usingheave response of a non-floating object for ocean wave energy conversion

Srinivasan CHANDRASEKARAN, Arunachalam AMARKARTHIK, Karuppan SIVAKUMAR, Dhanasekaran SELVAMUTHUKUMARAN, Shaji SIDNEY

《能源前沿(英文)》 2013年 第7卷 第3期   页码 279-287 doi: 10.1007/s11708-013-0268-4

摘要: To convert wave energy into usable forms of energy by utilizing heaving body, heaving bodies (buoys) which are buoyant in nature and float on the water surface are usually used. The wave exerts excess buoyancy force on the buoy, lifting it during the approach of wave crest while the gravity pulls it down during the wave trough. A hydraulic, direct or mechanical power takeoff is used to convert this up and down motion of the buoy to produce usable forms of energy. Though using a floating buoy for harnessing wave energy is conventional, this device faces many challenges in improving the overall conversion efficiency and survivability in extreme conditions. Up to the present, no studies have been done to harness ocean waves using a non-floating object and to find out the merits and demerits of the system. In the present paper, an innovative heaving body type of wave energy converter with a non-floating object was proposed to harness waves. It was also shown that the conversion efficiency and safety of the proposed device were significantly higher than any other device proposed with floating buoy. To demonstrate the improvements, experiments were conducted with non-floating body for different dimensions and the heave response was noted. Power generation was not considered in the experiment to observe the worst case response of the heaving body. The device was modeled in artificial neural network (ANN), the heave response for various parameters were predicted, and compared with the experimental results. It was found that the ANN model could predict the heave response with an accuracy of 99%.

关键词: ocean wave energy     point absorbers     heaving body     non-floating object     heave response ratio     artificial neural network (ANN)    

Dynamic in-plane transversal normal stresses in the concrete face of CFRD

Neftalí SARMIENTO-SOLANO, Miguel P. ROMO

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 135-148 doi: 10.1007/s11709-018-0481-7

摘要: Severe earthquakes can induce damages to Concrete Face Rockfill Dams (CFRDs) such as concrete cracking and joint's water stops distressing where high in-plane transversal normal stresses develop. Although these damages rarely jeopardize the dam safety, they cause large water reservoir leakages that hinder the dam functioning. This issue can be addressed using well know numerical methods; however, given the wide range of parameters involved, it would seem appropriate to develop a simple yet reliable procedure to get a close understanding how their interaction affects the CFRD’s overall behavior. Accordingly, once the physics of the problem is better understood one can proceed to perform a detailed design of the various components of the dam. To this end an easy-to-use procedure that accounts for the dam height effects, valley narrowness, valley slopes, width of concrete slabs and seismic excitation characteristics was developed. The procedure is the dynamic complement of a method recently developed to evaluate in-plane transversal normal stresses in the concrete face of CFRD’s due to dam reservoir filling [ ]. Using these two procedures in a sequential manner, it is possible to define the concrete slab in-plane normal stresses induced by the reservoir filling and the action of orthogonal horizontal seismic excitations acting at the same time upstream-downstream and cross river. Both procedures were developed from a data base generated using nonlinear static and dynamic three-dimensional numerical analyses on the same group of CFRD’s. Then, the results were interpreted with the Buckingham Pi theorem and various relationships were developed. In the above reference, the method to evaluate the concrete face in-plane transversal normal stresses caused by the first reservoir filling was reported. In this paper, the seismic procedure is first developed and then through an example the whole method (dam construction, reservoir filling plus seismic loading) of analysis is assessed.

关键词: CFR dams     dynamic analysis     in-plane normal stresses     concrete face    

Ribbon bridge in waves based on hydroelasticity theory

Cong WANG, Shixiao FU, Weicheng CUI

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 57-62 doi: 10.1007/s11709-009-0005-6

摘要: For the design and operation of a floating bridge, the understanding of its hydroelastic behavior in waves is of great importance. This paper investigated the hydroelastic performances of a ribbon bridge under wave action. A brief introduction on the estimation of dynamic responses of the floating bridge and the comparisons between the experiments and estimation were presented. Based on the 3D hydroelasticity theory, the hydroelastic behavior of the ribbon bridge modeled by finite element method (FEM) was analyzed by employing the mode superposition method. And the relevant comparisons between the numerical results and experimental data obtained from one tenth scale elastic model test in the ocean basin were made. It is found that the present method is applicable and adaptable for predicting the hydroelastic response of the floating bridge in waves.

关键词: hydroelasticity     ribbon bridge     wave     finite element method (FEM)    

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1141-1152 doi: 10.1007/s11709-022-0866-5

摘要: The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper. Firstly, the flexural stiffness and torsional stiffness of space truss arches are deduced. The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch. However, since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio, the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified. Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy. Secondly, the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio. By assuming that all components of space truss circular arches bear only axial force, the design formulas to prevent the local buckling of chord and transverse tubes are deduced. Finally, the bearing capacity design equations of space truss arches are proposed under vertical uniform load.

关键词: torsional stiffness     strength design     elastic buckling     space truss arches     out-of-plane    

标题 作者 时间 类型 操作

Existence of complete band gaps in 2D steel-water phononic crystal with square lattice

Cunfu HE, Huanyu ZHAO, Ruiju WEI, Bin WU

期刊论文

On subsurface box-shaped lined tunnel under incident SH-wave propagation

期刊论文

Finite element analysis of creep for plane steel frames in fire

Hui ZHU, Yuching WU

期刊论文

A MATLAB code for the material-field series-expansion topology optimization method

期刊论文

A simple method for evaluating liquefaction potential from shear wave velocity

Lianyang ZHANG,

期刊论文

Time reversal method for guided wave inspection in pipes

DENG Fei, WU Bin, HE Cunfu

期刊论文

A Stoneley wave method to detect interlaminar damage of metal layer composite pipe

Bing LI,Lei QIANG,Tong LU,Xu GENG,Minghang LI

期刊论文

基于变量变换级数展开法的光波导矢量本征模分析

肖金标,孙小菡,张明德,丁东

期刊论文

Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer

Bing LI,Xu GENG,Tong LU,Lei QIANG,Minghang LI

期刊论文

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

期刊论文

New computational treatment of optical wave propagation in lossywaveguides

Jian-xin ZHU,Guan-jie WANG

期刊论文

Experimental investigation and ANN modeling on improved performance of an innovative method of usingheave response of a non-floating object for ocean wave energy conversion

Srinivasan CHANDRASEKARAN, Arunachalam AMARKARTHIK, Karuppan SIVAKUMAR, Dhanasekaran SELVAMUTHUKUMARAN, Shaji SIDNEY

期刊论文

Dynamic in-plane transversal normal stresses in the concrete face of CFRD

Neftalí SARMIENTO-SOLANO, Miguel P. ROMO

期刊论文

Ribbon bridge in waves based on hydroelasticity theory

Cong WANG, Shixiao FU, Weicheng CUI

期刊论文

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

期刊论文